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An immunological mechanism of resistance to CDK4/6 inhibitors in HR+ breast cancer

ABSTRACT
CDK4/6 inhibitors are central to the clinical management of HR+HER2− breast cancer. We have recently 
demonstrated that immunosuppressive, IL17-secreting γδ T cells recruited to the tumor microenviron
ment by a CCL2-dependent mechanism upon CDK4/6 inhibition can repolarize tumor-associated macro
phages toward a CX3CR1+ phenotype associated with resistance to therapy.

ARTICLE HISTORY 
Received 28 May 2025  
Revised 1 June 2025  
Accepted 6 June 2025 

KEYWORDS 
Circulating biomarker; 
endocrine therapy; hypoxia; 
palbociclib; single-cell RNA 
sequencing; TAMs

Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are currently 
employed together with endocrine therapy (ET) as a first-line 
intervention in women with advanced/metastatic HR+HER2− 

breast cancer.1 CDK4/6 inhibitors have indeed demonstrated 
consistent progression-free survival (PFS) benefits across mul
tiple clinical trials enrolling this patient population, although 
less consistent results with respect to overall survival (OS), at 
least in some cases owing to the emergence of adaptive resis
tance to treatment.1 Mechanistically, CDK4/6 inhibitors have 
been conceived to operate by enforcing a stable proliferative 
arrest via retinoblastoma 1 (RB1) and the so-called DREAM 
complex, overall preventing the activation of E2F-dependent 
transcriptional programs that promote the G1-S cell cycle 
transition.2 In line with this notion, common mechanisms of 
resistance to CDK4/6 inhibitors include genetic RB1 losses as 
well as defects in the tumor protein 53 (TP53, best known as 
p53) system, which is important to suppress compensatory 
CDK2 activation in the context of efficient CDK4/6 blockage.1

That said, CDK4/6 inhibitors have also been shown to 
mediate immunostimulatory effects that may (at least partially) 
contribute to their clinical efficacy.3,4 Specifically, CDK4/6 
inhibitors appear to: (2) stimulate the secretion of immunosti
mulatory cytokines such as type III interferon (IFN) and che
mokines such as C-C motif chemokine ligand 2 (CCL2) by 
malignant cells, resulting in the recruitment of immune effec
tor cells to the tumor microenvironment (TME) and their 
activation; (2) promote MHC Class I exposure on the surface 
of cancer cells, hence rendering them increasingly visible to the 
host immune system; and (3) mediate a direct antiproliferative 
effect on immunosuppressive CD4+CD25+FOXP3+ regulatory 
T (TREG) cells.3,5 In this context, we set to investigate whether 
(at least in some circumstances) resistance to CDK4/6 inhibi
tors would also involve local or systemic immunosuppression. 
Harnessing an immunocompetent model of HR+ mammary 
carcinogenesis that recapitulates key immunobiological fea
tures of its human counterpart,6 as well as clinical samples 
from no less than 6 distinct cohorts of patients with 
HR+HER2− breast cancer, we have recently identified a novel 
immunological mechanism of adaptive resistance to CDK4/6 

inhibitors that involves interleukin 17 (IL17)-secreting γδ 
T cells and C-X3-C motif chemokine receptor 1 (CX3CR1)- 
expressing tumor-associated macrophages (TAMs).7

We set to investigate immunological changes in the tumor 
microenvironment (TME) of female C57BL/6 mice bearing 
mammary carcinomas as driven by slow-release medroxypro
gesterone acetate (MPA, M) pellets and oral dimethylbenz[α] 
anthracene (DMBA, D)6 receiving the prototypic CDK4/6 
inhibitor palbociclib (P) plus tamoxifen (T)-based ET, option
ally preceded by focal hypofractionated radiation therapy (RT) 
in 3 fractions of 10 Gy each. These tumors are poorly sensitive 
to immune checkpoint inhibitors,6 but respond to palbociclib, 
a therapeutic activity that can be increased when RT is deliv
ered before P (RT→P).8 Single-cell RNA sequencing 
(scRNAseq) revealed that P+T elicited the accumulation of γδ 
T cells in the TME of M/D-driven tumors, an effect that could 
not be documented in lesions subjected to RT→P+T. These γδ 
T cells exhibited a transcriptional profile that had previously 
been associated with immunosuppressive properties,9 notably 
Il17a expression coupled with reduced interferon gamma 
(Ifng) and Cd27 levels. Similar immunosuppressive features 
could be documented by scRNAseq in γδ T cells from human 
HR+HER2− breast cancer samples. In line with the ability of γδ 
T cells to promote resistance to CDK4/6 inhibitors, the ther
apeutic activity of P+T against M/D-driven mammary tumors 
could be improved by: (1) a γδ TCR-antagonistic antibody, (2) 
an IL17A-neutralizing antibody, and (3) the deletion of Tcrd 
(which encodes one of the γδ TCR chains)10 from the host.7

Our mouse scRNAseq dataset as well as bioinformatic ana
lyses comparing patients with ER+HER2− breast cancer from 
the public METABRIC dataset11 based on transcriptional sig
natures of IL17 signaling pointed to CCL2 and its cognate 
receptor C-C motif chemokine receptor 2 (CCR2) as to poten
tial drivers of γδ T cell infiltration in M/D-driven tumors 
responding to P+T. Indeed, both mouse and human HR+ 

breast cancer cells secreted CCL2 in response to P. Moreover, 
CCL2 neutralization with a specific monoclonal antibody not 
only improved the therapeutic effects of P+T against M/ 
D-driven mammary carcinomas, but also limited their 
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infiltration by IL17-producing γδ T cells. Interestingly, it 
turned out that the ability of RT to prevent the recruitment 
of γδ T cells by P+T reflects its capacity to select (at least 
initially) for hypoxic tumor regions that (1) are inhospitable 
for γδ T cells,12 and (2) interfere with P+T-driven 
CCL2 secretion by cancer cells.7

Mouse scRNAseq data linked γδ T cell recruitment as eli
cited by P+T to an enrichment in CX3CR1+ TAMs, which 
(compared to their CX3CR1− counterparts) exhibited 
a transcriptional profile associated with immunosuppression, 
notably the downregulation of genetic signatures of type I IFN 
and IFNG signaling, as well as (1) upregulation of the inter
leukin 17 receptor A (Il17ra), and (2) an increased abundance 
of transcripts involved in IL17 signaling. Similar transcrip
tional features could be documented in CX3CR1+ TAMs 
from human HR+HER2− breast cancer samples. Of note, repo
larizing CX3CR1+ TAMs toward an immunostimulatory con
figuration with a monoclonal antibody targeting colony 
stimulating factor 1 receptor (CSF1R) ameliorated the activity 
of P+T against M/D-driven mammary carcinoma, to 
a magnitude similar to IL17A neutralization. Blocking CSF1R 
and neutralizing IL17A exhibited no epistatic interactions with 
respect to the therapeutic efficacy of P+T, suggesting that these 
two processes operate within the same resistance mechanism.7

Importantly, genetic signatures of γδ T cell infiltration or 
IL17 signaling in diagnostic biopsies from patients with 
1,042 HR+HER2− breast cancer from the METABRIC 
dataset11 were associated with decreased disease-specific survi
val (DSS). Moreover, γδ T cells were enriched in the micro
environment of human grade III vs I or II HR+HER2− breast 
cancer, as documented in diagnostic biopsies from 86 patients. 
Along similar lines, an increased abundance of CX3CR1+ 

TAMs at baseline was associated with a lack of pathological 
complete response (pCR) in 12 patients enrolled in a clinical 
trial testing neoadjuvant pembrolizumab followed by pembro
lizumab plus stereotactic body RT (SBRT) in patients with 
high-risk HR+HER2− breast cancer.13 Finally, (1) an increased 
amount of activated γδ T cells in the circulation of 23 patients 
with HR+HER2− breast cancer prospectively allocated to 
CDK4/6 inhibitors was associated with decreased PFS; (2) in 
the same cohort, responders (but not non-responders) exhib
ited an early increase in circulating CCL2; (3) in 8 patients with 

HR+HER2− breast cancer, relapse after CDK4/6 inhibition was 
linked with an increase in intratumoral γδ T cells.7

In summary, our data delineate a novel immunological 
mechanism through which γδ T cells recruited to the TME of 
HR+HER2− mammary tumors upon CCL2 secretion as driven 
by CDK4/6 inhibitors promote the IL17-dependent repolariza
tion of TAMs toward a CX3CR1+ profile associated with resis
tance to therapy (Figure 1). As this mechanism can be averted 
by focal hypofractionated RT delivered prior to P+T, 
a randomized, Phase II clinical trial (CIMER, NCT04563507) 
is currently recruiting subjects to investigate standard-of-care 
CDK4/6 inhibition plus ET vs SBRT followed by CDK4/6 
inhibition plus ET in patients with oligometastatic (≤5 meta
static sites, no brain involvement) HR+HER2− breast cancer. 
As a future development, it will be interesting to understand 
whether IL17 inhibitors (no less than 3 of which are currently 
approved for use in patients with psoriasis and other inflam
matory conditions)14 or CSF1R inhibitors such as pexidartinib 
and vimseltinib (which are currently approved for use in 
patients with tenosynovial giant cell tumors)15,16 can be safely 
and effectively combined with CDK4/6 inhibitors in patients 
with HR+HER2− breast cancer that are not eligible to SBRT.
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Figure 1. A new immunological mechanism of resistance to CDK4/6 inhibitors in HR+HER2− breast cancer. At least in an immunocompetent mouse model of HR+HER2− 

breast cancer, the therapeutic effects of the CDK4/6 inhibitor palbociclib appear to be limited by a mechanism involving: (1) CCL2 secretion by malignant cells; (2) CCL2- 
dependent recruitment of γδ T cells to the tumor microenvironment; (3) γδ T cell secretion of IL17; and (4) IL17-dependent enrichment of tumor-associated 
macrophages (TAMs) toward an immunosuppressive CX3CR1+ profile. By virtue of its ability to (at least initially) select for hypoxic, CCL2-incompetent tumor regions, 
hypofractionated radiation therapy (RT) may be effectively used to avert this resistance mechanism, hence representing a promising therapeutic partner for CDK4/6 
inhibitors in the clinic. Whether blocking IL17 or repolarizing CX3CR1+ TAMs toward an immunostimulatory state with CSF1R inhibitors may also constitute clinically 
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